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ABSTRACT

Results of an extensive investigation of probability distribution functions

(pdfs) for Rayleigh-B_nard convection, in the hard turbulence regime, is pre-

sented. It is seen that the pdfs exhibit a high degree of internal universality.

In certain cases this universality is established within two Kolmogorov scales

of a boundary. A discussion of the factors leading to universality is presented.
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1 Introduction

Probability distribution functions (pdfs) long have been of importance in

discussing turbulent flows (see Pope 1 for a comprehensive review to 1985).

They serve as a valuable tool in presenting data and give valuable insights

into range of behavior. Recent work 2-5 has placed a new emphasis on their

study in turbulent flows. Direct numerical simulations 0-9 and improved ex-

perimental techniques 10-12 have permitted more detailed pdfs, and allow us

to go well beyond such low order moments as variances a, skewness s and flat-

ness f, common in the statistical description of turbulent flows. Part of the

recent interest in pdfs is due to the experiments of the Chicago group, 1°-12

and in particular to the exponential tails they observed for the pdfs of tem-

perature fluctuations. The wide tails of such pdfs underline the essential role

that intermittencv plays in turbulence phenomena. However, earlier investi-

gations also led to such exponential distributions x3-15.

On the theoretical side, Sinai and Yakhot 2 considered the pdf of a passive

scalar and made remarkable progress in describing the limiting distribution

function. Subsequent to this, Yakhot and coworkers 3'16 extended this ap-

proach and presented arguments leading to exponential pdfs for temperature

fluctuations and vorticity. Kraichnan has also made a notable extension to

this approach, s More recently Kraichnan 1T'ls has produced a relatively sim-

ple closure model based on the mechanisms at work in fluid flow which lead

to wide skirted pdfs.

In this paper we present the results of an extensive study of pdfs as

generated in a computational investigation of the Rayleigh-BSnard (R-B)

convection problem. The present results are based on a substantially longer

simulation than was considered in our earlier publications. 6'7 For purposes of

comparison we estimate the turnover time by

(1) r = n/q,.,.
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where H is the height of the computational cell and qrm, represents the rms

speed. In such terms our earlier work was based on 4.65 turnover times while

the present study is based on 41.7 turnover times.

The specification of the problem as well as the details of the calculation

appear in our earlier work s,7. In brief, we simulate turbulent thermal con-

vection as described by the Boussinesq equations :9. The vertical coordinate

is denoted by z and the horizontal by z and !/. The horizontal planform is a

square and the aspect ratio (width to height) is 2v_. The Rayleigh number

is .98 x 104 times the critical value, which places the simulation in the range

of hard turbulence in the terminology of the Chicago group. 1°-12 The velocity

satisfies slip boundary conditions on the impermeable horizontal boundaries

and temperature is specified on these walls. Periodic boundary conditions

are imposed in both horizontal directions.

The calculation uses 96 equal grid spacing in the vertical direction, with

a like number in each of the horizontal directions. Since the Nusselt number,

Nu, is roughly 23 for this calculation and since

H

(2)

where 6 is the thickness of the thermal sub-layer, two grid Spacings lie in the

sublayer. (The sub-layer thickness is also a measure of the Komogorov scale.)

These few facts are useful in interpreting the material that follows since

various quantities will be specified by their vertical gird spacing locations.

As will be seen the pdfs exhibit a remarkable degree of universality. By

universality we mean the unanticipated lack of dependence on strongly in-

homogeneous directions. As discussed in Section 6 the same universality

is expected to extend to other convection problems if the pdfs are suitably

normalized.



2 Preliminary Considerations

(3)

In general if a represents a dependent variable, then we will denote by

p_,._ p a-'_ )

the pdf which will be plotted in our figures. The bar signifies that the quan-

tity has been averaged in time as well as over a horizontal plane. As previ-

ously reported for B_nard convection s,_ temperature pdfs vary considerably

in the vertical direction, Figure 1 shows the pdf of temperature fluctuation,

T I, at six different elevations. (See the cited reference for more details of

the calculation and notation.) The temperature pdf at the edge of the ther-

mal sub-layer (z = 2/96) though not symmetric, has skewness close to zero.

Above the bottom sub-layer (z = 7/96, 16/96, and 26/96) the pdfs exhibit

a peak corresponding to a small negative value and a long positive tail, re-

sulting in significant positive skewness. This indicates the existence of hot

thermal plumes near the bottom boundary and at the mid-plane the pdf is

symmetric. Figure 2 shows the comparable pdfs for the horizontal velocity

u and vertical velocity w. The parabolic shape of the u pdf in this log-linear

plot indicates the Gaussian nature of the distribution. At the mid-plane the

pdf of w exhibits a similar Gaussian nature, whereas below the midplane the

pdf of w is positively skewed similar to the temperature pdfs but to a much

lesser extent.

In our earlier papers we confirmed the existence of an exponential range

to the pdf for fluctuations in temperature in the midplane as first exhibited

by the Chicago group. This result was based on less than three log units

range in the pdf. With the increased database, we now have reliable data for

a range of almost six log units as exhibited in Figure 1. While the pdf in the

midplane is still fi_ by an exponential over the first two to three log units the

overall picture is quite different. The reason for the sharp down turn in the



tails of the pdf is easy to understand. Since the temperature fluctuations are

bounded below and above by the wall temperatures, the sk'irts of the pdf,

P(T'), must terminate at finite values. This tendency is dearly exhibited

by the midplane pdf shown in Figure 1. A brief summary describing the

shape of the P(T') at the midplane is: (1) first, analytical considerations

dictate that the pdf must be rounded at the center; (2) next, this is followed

by wide skirts, fit by an exponential, and which indicate relatively large

fluctuations; (3) finally, limited temperature fluctuations dictated by the

wall temperatures force a rapid falloff of the skirts.

In viewing the preceding pdfs and those to be presented later it is impor-

tant to keep in rain the symmetries of the problem. This is especially true

of the pdfs measured in the midplane of the cell z = 48/96, since some pdfs

become symmetric only in the midplane. As has been shown, the problem

under discussion has a sixteen-fold symmetry group _°. We have not made

use of this to extend the database (and thus sharpen the pdf curves) but in-

stead have verified these symmetries to support the correctness of data. (E.g.

P(_), not shown, is virtually identical to P(fi), Figure 2(a).) In considering

the pdfs it is useful to split these into two classes. Those that must have

symmetric distributions as a result of an inherent symmetry and those for

which there is no K priori symmetry requirement. In general, if we consider

a pdf P(&), and if there exists an admissible transformation of the group, G,

such that

(4) Oa = -a

then this implies that

(5) = p(-&).

Consider for example the horizontal velocity u. Under refection in the

plane z = 0,tt --. -tt, and hence P(fi) is symmetric for all z values. This

4



is clearly indicated in Figure 2a. Alternately, both the vertical velocity w,

and the temperature fluctuation T' go into their negatives under reflection

in the midplane, b_tt zto_ elsewhere. Thus their mid-plane pdfs should be

symmetric and as seen in Figures 1 and 2(b), this is the case. However no

group operation produces (4) at other z elevations and there is no reason

for these pdfs to be symmetric for other values of z. This is borne out by

Figures 1 and 2(b).

We can carry this line of reasoning somewhat further and consider w, and

T_, neither of which have a group operation leading to (4). Figures 3a and 3b

show the pdfs for each of these quantities. As can be seen the corresponding

pdfs show no symmetry at any z values. This can be given a physical inter-

pretation. Away from the two thin sub-layers near the top and the bottom

boundaries the pdfs are negatively skewed. To see this this consider a parcel

of fluid located at some height z' travelling up. Since the vertical velocity

and temperature fluctuations are well correlated, the probability that this

parcel of fluid has positive temperature fluctuation is high. After a small

time interval the fluid parcel will be at a higher elevation z' + &z' surrounded

by relatively colder fluid. Therefore the probability that this parcel will ac-

celerate up (w, > 0) and contribute larger temperature fluctuation (T" > 0)

is high. Similarly if we consider a parcel of fluid with negative temperature

fluctuation moving down, the probability that the parcel will accelerate down

(w, > 0) with larger temperature fluctuation (T_ > 0) is large. Therefore

both w, and T_ show a peak in their probability distribution at a (small)

positive value and this peak is compensated by a less steeper negative tail,

in order to yield zero mean values. For the P(@,) this negative tail can be

associated with the less probable event of rapid deceleration of both the up

moving cold parcel of fluid and the down moving warm parcel of fluid. In

other words, mild acceleration up or down is more probable than mild de-

celeration, but rapid deceleration (up or down) is more probable than rapid

acceleration. Similar interpretations can be given for the gradient of the tern-
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perature fluctuations as well, and in generalthe pdf of a quantity provides

us with a view of its range of behavior.

For comparison with the pdfs of Figure 3, we consider _ which has a sym-

metry leading to (5) for all z. The corresponding pdf is shown in Figure 4.

This clearly indicates the symmetry but in addition shows a remarkable de-

gree of universality in the z-direction. Such universality will be encountered

for the majority of the pdfs which will be presented below. Further discussion

of this unexpected property will be presented in the following sections.
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3 Probability Distribution Functions

As already seen in Figure 4 the pdf of u_ (or equivalently v_) exhibits a

surprising universality across the convective cell. To explore this property

further we present, in Figure 5, the components of vorticity. The pdfs for the

horizontal components _1 and f_2 are virtually identical, only _1 is shown,

and in addition exhibit a high degree of universality. Vertical vorticity, _3, on

the other hand shows a significant departure from universality. All vorticity

components lead to pdfs which satisfy (4), either through reflection in a plane

of constant x or y.

Given that mechanisms are at work that force universality, we should

expect in general that boundaries will produce significant departures from

universality. To contrast the results of the pdfs for the horizontal and vertical

components we recall that

(7) n3= .

It follows from the boundary conditions for this particular R-B convection

problem TM that fll -- 0 (and na - 0) at a wall, while f_a is unrestricted at a

wall. As a general principle one should expect that all permissible fluctuations

will appear in the corresponding pdf with an appropriate probability. This

can be seen in Figure 5. Thus f13 which is unrestricted at the boundary has

a wide skirt at z = 2/96, while f_l which is restricted at the wall can only

develop a slight skirt in the neighborhood of the wall z = 2/96. As a result

universality does not appear in P(_) until we approach the central region,

where the pdf is fit by the universal curve. On the other hand universality is

quickly achieved for P(_I) and P(_2). It should be noted that in the central

region the pdf of all three components of vorticity are well fit by the same
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exponential over at least three decades. Further the pdfs of those velocity

derivatives that constitute the three components of vorticity (u,_, _,, v,, v,, wx

and wv), coincide with the above exponential distribution (for example see

Figure 4).

We have already seen in Figures 1 and 3, examples of pdfs that show

a strong departure from universality. For each of these pdfs the quantity

in question does not satisfy the symmetry property (4) except possibly at

the center plane. Both u_ and v v are linked to w, through the continuity

equation. Since neither of these quantities have a transformation leading to

(5), their pdfs lack universality. The pdfs for ux and vv closely resemble

those'shown in Figure 3(a) and are not presented here. (Only the pdf of w,

at z = 2/96 is significantly different.) [Although u, and vv are identically

distributed, they are correlated, since the convolution of P(fi,) with itself

doesnot produce

The pdfs for w,, with high accuracy lie on those of _ql, Figure 5(a). By

contrast with the pdf in w, Figure 2(b), this is universal except very near

the wall. Thus taking a derivative of w, which then leads to a symmetrizing

transformation, (4), produces a quick transition to universality. In addition,

the value of w, is pinned to be equal to zero at both the top and bottom

boundaries. This transition to universality is less true for T', the pdf of which

is shown in Figure 6. We recall, however, that the pdf of T I itself, Figure 1,

is far less universal and significantly more skewed than the pdf of w, Figure

_(b).

In generalitcan be observed that temperature statisticsobey universality

over a narrower region near the midplanc than their velocity counterpart.
: :Z

This reluctancy towards universalitycan be, at leastpartially,attributed to

the highly intermittentnature of temperature and itsderivativesignals.For

example, at the midplane while the pdf of ttand w are Gaussian the pdf of

T' isexponential and while the pdf of vorticityisexponential the pdf of T_

isflatterthan an exponential.



4 PDFS for Higher Derivatives

By taking derivatives of flow variables we emphasize the smaller scales.

It is a widely held view that small scales forget their large scales origins.

This concept lies at the heart of the -5/3 Kolmogorov range 21 and of the

exponential dissipative range _. Both these energy ranges represent univer-

sal behavior of turbulent flows. Thus, as derivatives of flow quantities are

increased their pdfs depend more heavily on the higher wavenumbers and a

tendency towards universality should be expected. Pdfs of derivatives say

something about distributions in small eddies, the higher the derivative the

smaller the dominant eddy. What must be regarded as remarkable is that

even pdfs of first derivatives show universality. It would appear that more

than the above mentioned universal ranges are at work in producing univer-

sality, and very probably that dynamics is important in establishing at least

some of the universal features.

In this section we consider the effect of taking additional derivatives of

flow quantities on the corresponding pdfs. In Figures 7-9 we exhibit a selec-

tion of second derivatives of flow quantities. These show a higher degree of

universality than their first derivative counterparts. Before commenting on

these in detail, we observe that all the pdfs shown in these figures exhibit a

flared out skirt and are no longer fit by a simple exponential. To account for

this effect, we refer to an argument given sometime ago by Kraichnan 23 which

demonstrates that greater intermittency is to be expected as the wavenum-

ber is increased. His argument is largely independent of Reynolds number.

Thus in viewing pdfs of higher derivatives of flow quantities we should expect

increasing intermittency and hence wider flaring skirts in the pdfs.

In Figures 7(a) and 7(b) we show the pdfs for u_ and u_ both of which

exhibit strong universality. On the other hand pdfs for u_v shown in Figure

7(c) exhibit some departure from universality, u_ is identically equal to zero

at both boundaries, due to the stress-free boundary condition, therefore a



strong tendency towards universality can be expected. Though the bound-

ary condition for the other three quantities are not prescribed, variations in

u** will be small since it is the vertical gradient of u, which is identically

equal to zero at boundaries. As seen earlier, functions that are fixed at the

boundaries quickly attain universality and within the universal regime the

vertical gradients as well as the horizontal gradients Can be expected to be

bounded and exhibit strong universality. On the contrary, both u_ and u®v

are neither fixed at the boundary nor do they represent the derivative of a

quantity which exhibit universality.

We do not show the three pdfs corresponding to w_, w** and w_,, since

they virtually lie on the universal curve of Figure 7(b). The pdfs of the first

two have no transformation under which (5) holds. Symmetry is nevertheless

established. This confirms that skewness is primarily a property of large scale

structures. 9 Both w®= and w_ ( by continuity) are restricted to be zero at the

boundary, whereas w=, is the vertical derivative of the universal function w=.

Therefore all three pdfs show universality and to excellent approximation fall

on the same curve, Figure 7(b). In Figure 8 we show pdfs for T'_ and T_z.

The pdfs for the last quantity does not have a symmetrizing transformation

leading to (4). Nevertheless except near the wall for P(T_'_) the pdfs are

symmetric and exhibit a tendency towards universality. This is even more

true for T_ which also does not have a symmetrizing transformation but has

pdfs very well fit by Figure 8(a).

Thus we conclude that whatever the mechanism forcing universality, as

might be expected, it is more effective on higher derivatives.
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5 Other Mean Quantities

Figure 9 contains plots of T'.,o,U.,_.,_r,_., as well as < WT _ > (and

its covariance) and _ < T I >. In certain instances for a range of z, the

curves are well fit by power laws and this has been indicated. Arguments

leading to power law dependence are similar to those leading to the inertial

sublayer (log-layer) for turbulent wall bounded fiows? 4 In brief once away

from the diffusive layers adjacent to a wall the only available length scale

is the distance to the boundary. Prandt125 applied this to the convection

problem and one finds 24'26

(8) T',_° cx z -1/3, w... cx z 1/3" d_' z_,/3
, oc

in this region. T--° and w,,_° are the rms temperature and vertical velocity

fluctuations (Kraichnan, 27 also using mixing length theory, has considered in

detail the case in which the Pr number is allowed a wide range of values.)

A simple argument which leads to (8) is that since in the inviscid region the

convective heat transport

(9) _T-r = Ho

is a constant, this implies that w and T' scMe reciprocally with z. Thus, in

the vertical momentum equation the lead terms are

&v

(lO) w'-_z cx T'

from which the scaling in (8) follows.

While Tim ° does show a sensible range for a (-1/3)-power, the same is

not true for w_,_,. Though the convective heat transport < wT _ > and (the

covariance < wT _ >/wr,,°T_m,) are constant across the layer (.20 < z < .35)

except near the boundary, w does not scale reciprocally since the region

over which T ° cc zl/S(.05 ( 2 < .2) falls closer to the boundaries. We also

11



note that dT'/dz, does not follow a -4/3-power. Townsend 2s'29 observed

a -2 power, indicated as a dashed line in the Figure, a value also given

by Carroll 3° and in a computation by Eidson et al.31 This value was first

proposed by Malkus 32 from theoretical arguments. However we point out

that a -9/4 power, the continuous straight line of the Figure, is a better fit

to the calculation.

The lack of a consistent universal scaling regime is reminiscent of the

situation for boundary layer flows, where an argument similar to that lead-

ing to (8) produces the log layer for the mean velocity 33. However as has

been known for some time, not all quantities follow the universal scaling.

To account for the lack of universality Townsend 34 and later Bradshaw 35

postulated the notion of active and inactive portions of the flow. In their

explanation they invoke the idea of large (integral scale) eddies entering the

boundary regions at infrequent times and marring the universality of some

quantities.

In the present case, the underlying scaling arguments assume a semi-

infinite domain in the vertical direction without horizontal wind, 26 and so

might be thought to be applicable outside the dissipative sublayer at a wall.

Recent experiments by the Chicago group indicate a sustained symmetry

breaking _/Ttd. Also for the numerical simulations already discussed s,7, the

roll motions act as a winds since their time scale is of relatively long duration

although they have zero mean. In any event this more general case changes

the above dimensional reasoning and is treated in Monin and Yaglom 2s who

find general classes of possible functional dependences. We do not pursue

this further since scaling does not appear to be a dominant effect.

Since all the pdfs considered are given in the normalization, (3), it is of

interest to present the remaining variances of the quantities considered with

respect to their variation in the vertical direction, z. The rms fluctuation of

the three components of vorticity are plotted in Figure 10. Figures 11, 12

12
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and 13 show the rms fluctuation for the first and second derivative quantities.

Since pdfs of the raw variables follow from these plots this completes the

single point probabilistic description of all the relevant quantities.

While scaling does not appear to account for the universality another

feature of the pdfs does help explain the collapse of pdfs onto universal

curves. We observe that the above symmetric pdfs are well approximated by

the family of curves

(11) P(_) = Ce-_,

where C = C(p, k) is easily chosen so that there is unit area under the curve.

p = 2 corresponds to a Gaussian distribution, p = 1 corresponds to an

exponential distribution and p less than one indicates a flatter intermittent

distribution. All the even moments of this distribution depend on p and k,

while the odd moments are identically equal to zero. Closer to the boundaries

the distributions are intermittent and the pdfs are flared out corresponding

to p less than 1. As universality is approached the value of p decreases

and in the universal regime since the level of intermittency can be expected

to be uniform in the value of p i.e. it will be independent of the vertical

location. Although k, which measures the width or the standard deviation

of the pdf, can vary in the universal regime for the raw variables, once the

raw variables are normalized by the rms fluctuation the value of k is dictated

to be so that the normalized standard deviation is unity. Therefore

in the universal regime p and k (which now depends only on p) are constants.

Therefore as long as the level of intermittency (or p) reaches an asymptotic

value, indicating universality, the collapse of the normalized pdfs can be

explained. As already mentioned the approach to universality is rapid in the

case of variables that are fixed at the boundaries.

13



6 Concluding Remarks

An overall survey of the pdfs that have been exhibited leads one to believe

that there is an active mechanism forcing the pdfs toward universal form.
=

Both the degree to which this is true and the resulting shape of the pdf

depend on the dominant relevant eddy _ze i.e. on the number of derivatives

being considered. In general the smaller the eddies, the more quickly is

universality established, and the more intermittent (flared skirts) the shape

of the pdf. As has been observed by She et al9 skewness is essentially a large

scale property, while flatness is a small scale effect.

As might be expected the presence of boundaries mars universality and

wide departures from universal behavior can be expected in the neighborhood

of a boundary. A boundary can act in two extremely different ways. It can

pin down a fluctuation. E.g. w, T', wx, u,,.., are all restricted to vanish at a

boundary. On the other hand _s, T', w,, %, ux,.., are all unrestricted in that

any fluctuation in those quantities is permitted at the boundary. Another

important ingredient in determining the form of a pdf is symmetry. If a

transformati0n of the form (4) is appIica_le then a symmetric pdf results, in

certain instances this is only achieved at the midplane, e.g. w and T'. While

in other cases symmetric pdfs must be obtained (assuming that there exists

sufficient data) at all eievati0ns, e.g. u,w,, u,, ....

As a general rule, at a boundary, and in its neighborhood, if there is no

restriction imposed on the quantity, one should expect all manner of possible

fluctuations to appear. This helps to explain why for example, P(_s) has

relatively wide skirts in the neighborhood of the boundary, and as a result

shows a slower tendency to universality. By comparison u, must be zero

at a boundary and thus does not develop wide skirts in the neighborhood

of a boundary. Unlike P(_s), P(_,) tends very quickly to a universal form,

Figure 4.

The cases of P(T') and P(@) are of interest to consider from the perspec-

14



tive of the present discussion. In both instances the quantity in question is

forced to vanish at the boundary. This however has little effect in restricting

the corresponding pdf. Although each must be symmetric in the midplane,

this is not true elsewhere and the passage to the symmetric pdf is di_cult

to characterize.

The mechanism which isresponsiblefor the tendency towards universal-

ity isnot obvious. Kraichnan s'Ishas produced a simple heuristicmodel of

intermittency based on a closureapproximation which exhibitsindependence

of Re. This may be indicativeof the processesat work and which bring about

universality.Further investigationof thiseffectisclearlyindicated.

While our deliberationsare based on the computation of R-B convection,

at one value of Ra, itseems clear that they should be generalizeto other

flow geometries and other values of the control parameter. The approach to

universalitywhich we have followed in terms of the verticaldistance from

a wall is doubtless better expressed in terms of a wail normalized variable.

For channel or boundary layer flows this would be the usual wall normal

coordinate, while in the present case z/6 is the suitable variable. When the

pdfs are expressed in such terms we anticipate that universality will also

hold with varying control parameters. A study of available channel flow data

strongly indicates universal forms for the corresponding pdfs. sz.
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Figure 1: Probability distribution function of normalized temperature fluc-

tuation T I = _,,__7 at six different heights from the bottom boundary.

z = 2/96 is at the edge of the bottom thermal sub-layer, z = 7/96 is in the

region of hot thermal plumes and z = 16/96 is roughly at the edge of the
plume region, z = 26/96, 37/96 and 48/96 are in the turbulent core. The
results corresponding to the top half can be extended from the bottom half

based on symmetry conditions.
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